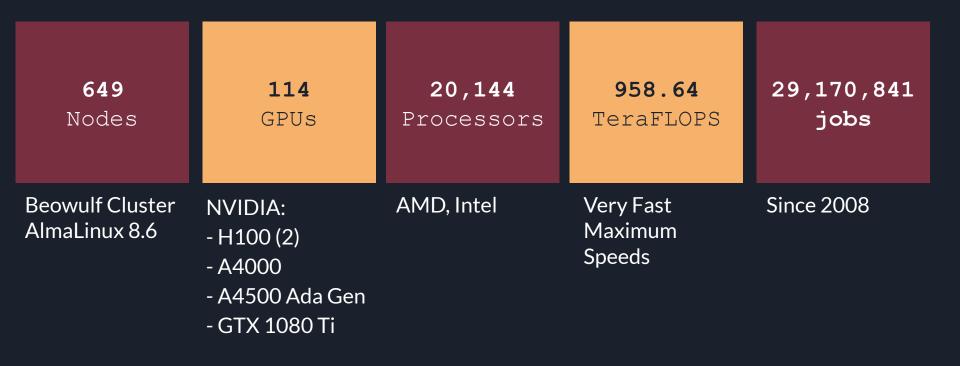
Introduction to High Performance Computing (HPC)

Marcelina Nagales Research Computing Center September 9 2025

Agenda

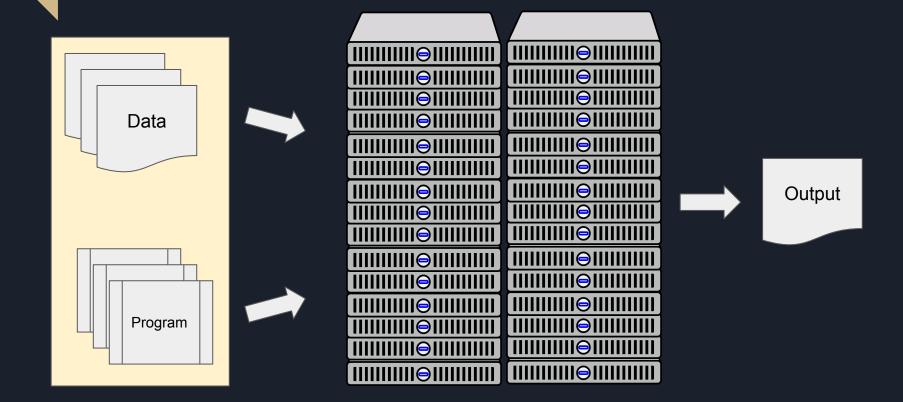
- What is High Performance Computing (HPC)
 - HPC Definitions
- Accessing the HPC
 - Exercises
- Support from RCC Team

What is High Performance Computing?


Specialized Hardware

- Contains more processors than the average home computer
- Has several generations of both AMD and Intel Processors
- Can house custom machines (via a research grant) with specialized hardware like special CPUs, DSPs, SSDs, GPUs and otherwise.

Offload Your Work


- Takes pressure off your regularly used desktop, laptop or other devices
- Scales computational processes not possible on home machines
 - parallel processes
- Runs tasks that need to be repeated many times over a long period of time

RCC System Metrics

HPC Definitions

HPC Job

How HPC Works

FSU's HPC is a shared resource for all FSU researchers

Job Scheduler: SLURM

- Directs jobs so they can be processed quickly and effectively
- Allocates resources to jobs so the cluster does not freeze up

User Accounts

• Logins and Home Directories

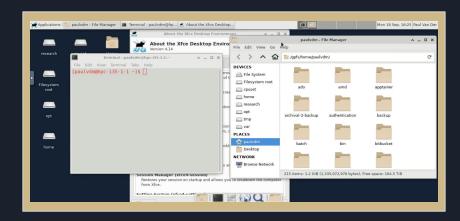
Slurm Accounts

Queues / Partitions

Job Scheduler: SLURM

How to Access the HPC

Ways to Use HPC


Command-Line Interface

- Any SSH-Supporting CLI Terminal
 - Windows PowerShell
 - Cygwin Emulator
 - MobaXTerm Emulator
 - PuTTY
 - Linux Terminal
 - Mac Terminal

Graphical Interface

Open OnDemand

Command Line Interface

- RCC uses Linux on all of our compute nodes and login nodes
 - RCC offers an Intro to Linux Workshop
- Connect using SSH (Secure Shell)

```
Warning: Permanently added 'hpc-login.rcc.fsu.edu,144.174.41.26' (ECDSA) to the list of known hosts
Welcome to the RCC
NOTICE: The HPC will be offline for planned maintenance Dec 3 - 7
Details: https://fla.st/UULW59S3
RCC/HPC Documentation can be found here:
https://rcc.fsu.edu/docs
Last login: Mon Sep 18 09:27:42 2023 from 10.146.38.184
** Disk usage (GPFS) quota report: 115.8G used of 150G available
For a disk quota report, run: gpfs quota
WARNING: Files in the /gpfs/research/eoas volume will be deleted after 90 days
[mln13@h22-login-26 ~]$ ls
                                                                   lifeexpectancycountries.csv
agisoft-2021-12-20-13-47.lic
                                     Gau-1727753.inp
                                                                   LK libError
AgisoftMetashape_testing
                                     Gau-4171429.inp
                                                                   log.lammps
agisoft_trial_2022-01-06-16-26.lic
                                     GPU rawtest
                                                                   LWP_xalt_test_temp.py
bigdft
                                      gromacs
bozanicgroup
                                      GULP
                                                                   marcelina
                                                                   Marcelina-RPM-GPG-KEY
calcbench.txt
cb env script.env
                                                                   meshroom-2021.1.0.def
citations
                                     hello.c
                                                                   meshroom-2021.1.0.sif
                                     hello.py
cli productivity
                                                                   mln13 browser.p12
 COAWST User Manual.doc
                                                                   mycode.R
                                     I16 S1 M1 W Freg LS.com
commands, ref
                                                                   mycode.Rout
'Cu3FeS4 G09 Example'
                                     input_tmp.in
                                                                   n2.nw
                                      ib rcc metashape-log.txt
                                                                   namelist.input
Desktop
deviceQuery.cu
                                      koji_repos
                                                                   nltk_data
                                                                   numpy-1.22.3+mkl-cp310-cp310-win32.whl
fastStruct
                                      Lammps
                                      libxc
[mln13@h22-login-26 ~1$
```

Open OnDemand Applications

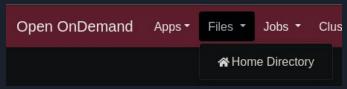
GUI Applications

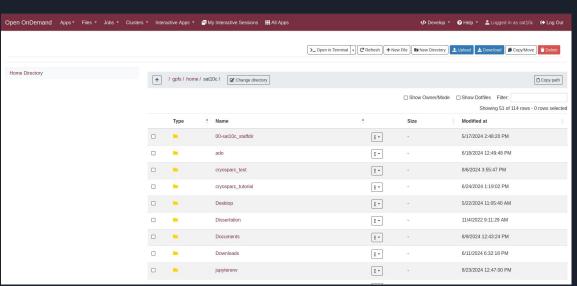

- Desktop
- MATLAB
- STATA
- VisIt

Servers

- Jupyter Notebooks
- RStudio Server

Visualizations

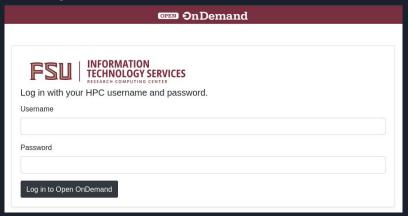

- PyMOL
- VMD



ood.rcc.fsu.edu

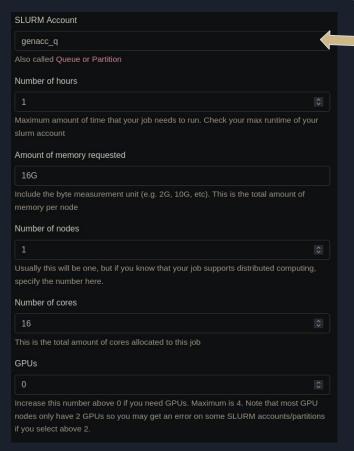
https://rcc.fsu.edu/docs/ood

Open OnDemand File Manager

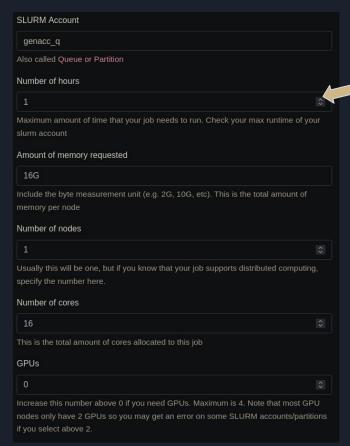


- Browse files on the HPC
- Upload small files (code or small datasets < 10 GB)
- Download small files (code or small datasets < 10 GB)
- Open and look at files.
- Edit files.
- Delete and move files.

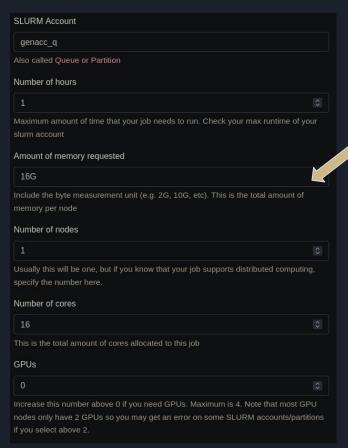
Submitting Jobs to the HPC System


Open OnDemand Interactive Jobs

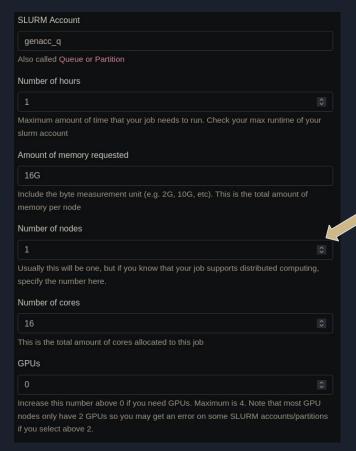
- ood.rcc.fsu.edu
- Login credentials
 - Your RCC Account details



- Open OnDemand landing page.
- Interactive Apps
- Job Creator
- Terminal Access
- File Browser


Queue/SLURM Account

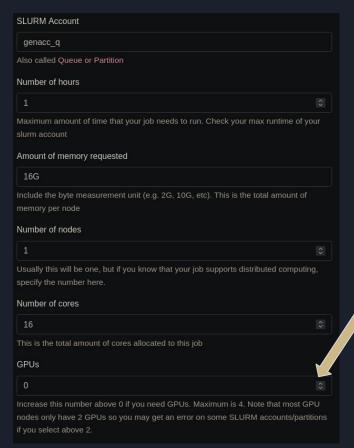
- The set of computers you want to use
- If you leave this blank, it will default to the genacc_q SLURM Account.


Number of Hours

 Maximum amount of time you expect to need for your work


Amount of Memory Requested

• The total amount of memory you expect to need per node for your job.


Number of Nodes

 The number of individual computer machines you want to use. (Not all OOD apps will have this option available!)

Number of Cores

 The total number of cores you want to use for your job.

GPUs

 The number of GPU cards you want to use for your job (can leave at 0 if none needed).

Exercise

- 1. Navigate to https://ondemand.rcc.fsu.edu
- 2. Log in with your RCC workshop Credentials
- 3. Navigate to the RCC Desktop
- 4. Set up a RCC Desktop job with the following resources:
 - a. 4 Hours
 - b. Using the **workshop** SLURM Account
 - c. 4 Cores
 - d. 16 GB of Memory
 - e. No GPUs
 - f. Leave everything else default
- 5. Launch the job
- 6. Open the RCC Desktop window in OOD and look around a bit!

Exercise

- 1. Navigate to https://ondemand.rcc.fsu.edu
- 2. Log in with your RCC Credentials
- 3. Navigate to the MATLAB Interactive App
- 4. Set up a MATLAB Job with the following resources:
 - a. 4 Hours
 - b. Using the **workshop** SLURM Account
 - c. 4 Cores
 - d. 16 GB of Memory
 - e. No GPUs
 - f. MATLAB 2022b Version
 - g. Leave everything else default
- 5. Launch the job
- 6. Open the MATLAB window in OOD and look around a bit!

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu openmpi
srun example.x
```

Job Name

The job name
 parameter is simply an
 identifier for your job.
 This can be helpful for
 keeping track of what
 each job is doing.

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu openmpi
srun example.x
```

Queue/SLURM Account

 If this is not specified, it will default to the genacc_q SLURM Account.

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu openmpi
srun example.x
```

Number of Hours

- Time requests are more flexible in batch jobs. SLURM's time allocation format is:
- Days-Hours:Minutes:Seconds
- Example: 14-00:00:00 = 14 Days
- Example: 34:25:16 = 34 Hours, 25 Minutes and 16 Seconds.
- If this is not specified, it will default to the listed **Default Wall Time** listed in the documentation.

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu openmpi
srun example.x
```

Amount of Memory Requested

- If you don't specify this, you'll be automatically allocated:
 - Number of Cores * Default
 Memory per Core (<u>see the</u>
 <u>documentation</u>) as this
 number depends on the
 SLURM Account)

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu openmpi
srun example.x
```

Number of Cores

- This is the number of physical CPU processors you want to use.
- Most of the benefits of HPC come from parallel processing.
- Check your software's documentation to see if it supports this!

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu openmpi
srun example.x
```

Number of Nodes

- This is the number of full computers (think desktop/workstation towers for reference) that you want to use.
- This is for programs that support <u>Distributed</u> <u>Computing</u>.
- If this parameter is left out the job scheduler will decide this on its own.

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu openmpi
srun example.x
```

GPUs

 If you don't want GPUs, you can omit the entire
 #SBATCH --gres=gpu: line.

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu openmpi
srun example.x
```

Environment Modules

 Open OnDemand Apps will often do this for you. These load software and applications into your terminal environment for you.

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu enmpi
srun example.x
```

Command to Run your Program

 In non-interactive jobs, you have to tell the computer what you want it to do in your job ahead of time.

```
#!/bin/bash
#SBATCH -J "MyJob"
#SBATCH -A backfill2
#SBATCH -t 4:00:00
#SBATCH --mem=16G
#SBATCH -n 16
#SBATCH -N 1
#SBATCH --gres=gpu:1
module load gnu openmpi
srun example.x
```

Translating the Job Script

- Run it in the backfill2 SLURM Account
- Give me at most 4 hours to run my job
- I need 16 GB of memory per node for this.
- I also need 16 cores for this.
- I also need all 16 cores to be localized onto 1 physical computer node (don't spread the cores over multiple nodes).
- I also need 1 GPU card of any type.
- My program needs the OpenMPI built with the default GNU compilers.
- Please run my code called example.x

Exercise: MPI Trapezoid Example Program

Using Files already on your system, run these commands

```
module load gnu openmpi
srun --export=ALL trap.x
sbatch submit-trap.sh
```

This will return a job ID number (number will change each job)

```
Submitted batch job 123456
```

When the job is complete, a new file fill be present called:

- **Slurm-123456.out** (again, the number will change from job to job)
- The results from your job will be in there.

Support from RCC Team

What is the FSU Research Computing Center (RCC)

- A unit of the FSU Information Technology Services department
- Originally a division of Scientific Computing back before 2013
- The team that hosts and administers the main supercomputing resource at FSU: the High Performance Computing system (HPC)

Register For an Account

Faculty Requirements

• FSU ID and password

Student Requirements

- FSU ID and password
- Faculty Sponsor

Guest (non-FSU)

- Guest FSU ID
- Faculty Sponsor

www.rcc.fsu.edu/manage

Infrastructure

Physical Location

Cluster held in the Sliger Data Center in Innovation Park.
 Tours available!

Standard RCC accounts

- 1 Home directory per user
- 150GB of Parallel Storage
- Temporary Scratch Space (Space Limit is variable)
- Access to the General Access and Backfill Queues
- Accessible via Open On Demand and CLI

Infrastructure

Additional Features for Paid RCC Accounts

- Access to highly scalable Parallel and Archival storage systems
- Priority access to dedicated computing resources in your own queue
- Custom and specialized hardware and infrastructure (as available)

General Access Slurm Accounts

https://acct.rcc.fsu.edu/manage/hpc partitions

Slurm Account	Default Runtime	Max Runtime	Max CPU Cores/Job	Max Jobs/User	Max Running Jobs/User
genacc_q	14 days	14 days	400	100	100
backfill	4 hours	4 hours	512	100	100
backfill2	4 hours	4 hours	512	100	100
condor	14 days	90 days	8	100	100
quicktest	10 minutes	10 minutes	8	2	1

Support Services

Basic Software Support

- Basic Software installation, configuration, and maintenance
- Technical support for installed applications and software
- Workflow process support and improvement assistance
- Assistance with HPC commands and utilities

Basic Hardware Support

Data Center Colocation

Support Services

Additional Paid Support (more Information)

- Software Development Consulting
- Complex or Highly Customized Software Installations
- In-depth HPC and software focused consulting for research projects

Chemistry

ABINIT NWChem GROMACS Wannier90

Scientific

Armadillo (C++) BOOST FFTW OpenCV

Software

Data Science

NiftyReg HDF5 Apache Spark R Bioinformatics

Trimmomatic MIGRATE MAUVE MAFFT

Parallel

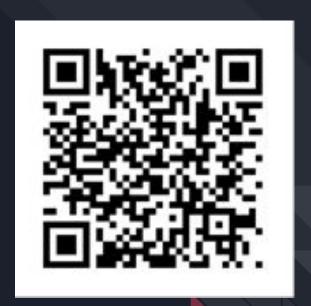
OpenMPI MVAPICH2 CUDA TotalView

https://rcc.fsu.edu/software

RCC Service Metrics

2 Million 2,200 600 Average Jobs per Research **Support Cases** Serviced since Year Software Tools Managed and 2022 Supported

Software Team Services


Email us at support@rcc.fsu.edu
for any questions or concerns

- Regular Office Hours 8AM 5PM Monday through Friday
 - We work a hybrid schedule and are available by Zoom or email
 - Dirac Science Library 151
- <u>HPC Drivers Ed</u> Introductory HPC materials
- <u>docs.rcc.fsu.edu</u> RCC Official Documentation

Questions?

Survey

https://fsu.qualtrics.com/jfe/form/SV_3arW 54ZInjjRg1g?Q_CHL=qr

